Тангенс в 4 четверти имеет знак. Основные свойства тригонометрических функций: четность, нечетность, периодичность. Знаки значений тригонометрических функций по четвертям

Содержание

Положительные и отрицательные углы в тригонометрии. Основные свойства тригонометрических функций: четность, нечетность, периодичность. Знаки значений тригонометрических функций по четвертям

Тангенс в 4 четверти имеет знак. Основные свойства тригонометрических функций: четность, нечетность, периодичность. Знаки значений тригонометрических функций по четвертям

Тип урока: систематизации знаний и промежуточного контроля.

Оборудование: тригонометрический круг, тесты, карточки с заданиями.

Цели урока: систематизировать изученный теоретический материал по определениям синуса, косинуса, тангенса угла; проверить степень усвоения знаний по данной теме и применение на практике.

Задачи:

  • Обобщить и закрепить понятия синуса, косинуса и тангенса угла.
  • Формировать комплексное представление о тригонометрических функциях.
  • Способствовать выработке у учащихся желания и потребности изучения тригонометрического материала; воспитывать культуру общения, умение работать в группах и потребности в самообразовании.

«Кто смолоду делает и думает сам, тот
становится потом, надёжнее, крепче, умнее.

(В.Шукшин)

ХОД УРОКА

I. Организационный момент

Класс представлен тремя группами. В каждой группе консультант.
Учитель сообщает тему, цели и задачи урока.

II. Актуализация знаний (фронтальная работа с классом)

1) Работа в группах по заданиям:

1. Сформулировать определение sin угла.

– Какие знаки имеет sin α в каждой координатной четверти?
– При каких значениях имеет смысл, выражение sin α, и какие значения оно может принимать?

2. Вторая группа те – же вопросы для cos α.

3. Третья группа ответы готовит по тем же вопросам tg α и ctg α.

В это время трое учащихся самостоятельно работают у доски по карточкам (представители разных групп).

Карточка № 1.

Практическая работа.
С помощью единичной окружности вычислить для угла 50 , 210 и – 210 значения sin α, cos α и tg α.

Карточка № 2.

Определить знак выражения: tg 275; cos 370; sin 790; tg 4,1 и sin 2.

Карточка № 3.

1) Вычислить:
2) Сравнить: cos 60 и cos 2 30 – sin 2 30

2) Устно:

а) Предложен ряд чисел: 1; 1,2; 3; , 0, , – 1. Среди них есть лишние. Какое свойство sin α или cos α могут выражать эти числа (Может ли sin α или cos α принимать эти значения).

б) Имеет ли смысл выражение: cos (–); sin 2; tg 3: ctg (– 5); ; ctg0; ctg (– π). Почему? в) Существует ли наименьшее и наибольшее значение sin или cos, tg, ctg.

г) Верно ли? 1) α = 1000 является углом II четверти; 2) α = – 330 является углом IV четверти.

д) Числам соответствует одна и та же точка на единичной окружности.

3) Работа у доски

№ 567 (2; 4) – Найти значение выражения
№ 583 (1-3) Определить знак выражения

Домашнее задание:таблица в тетради. № 567(1, 3) № 578

III. Усвоение дополнительных знаний. Тригонометрия в ладони

Учитель: Оказывается, значения синусов и косинусов углов «находятся» на вашей ладони. Протяните руку (любую) и разведите как можно сильнее пальцы (как на плакате). Приглашается один ученик. Мы измеряем углы между нашими пальцами.

Берется треугольник, где есть угол в 30, 45 и 60 90 и прикладываем вершину угла к бугру Луны на ладони. Бугор Луны находится на пересечении продолжений мизинца и большого пальца.

Одну сторону совмещаем с мизинцем, а другую сторону – с одним из остальных пальцев.

Оказывается между мизинцем и большим пальцем угол 90, между мизинцем и безымянным – 30, между мизинцем и средним – 45, между мизинцем и указательным – 60. И это у всех людей без исключения

мизинец № 0 – соответствует 0, безымянный № 1 – соответствует 30, средний № 2 – соответствует 45, указательный № 3 – соответствует 60,

большой № 4 – соответствует 90.

Таким образом, у нас на руке 4 пальца и запомним формулу:

№ пальцаУголЗначение

Это просто мнемическое правило. Вообще значение sin α или cos α надо знать наизусть, но иногда это правило поможет в трудную минуту.
Придумайте правило для cos (углы без изменения, а отсчета от большого пальца). Физическая пауза, связанная со знаками sin α или cos α.

IV. Проверка усвоений ЗУН

Самостоятельная работа с обратной связью

Каждый ученик получает тест (4 варианта) и лист с ответами для всех одинаковый.

Тест

Вариант 1

1) При каком угле поворота радиус займет то же положение, что и при повороте на угол 50. 2) Найдите значение выражения: 4cos 60 – 3sin 90.

3) Какое из чисел меньше нуля: sin 140, cos 140, sin 50, tg 50.

Вариант 2

1) При каком угле поворота радиус займет тоже положении, что и при повороте на угол 10. 2) Найти значение выражения: 4cos 90 – 6sin 30.

3) Какое из чисел больше нуля: sin 340, cos 340, sin 240, tg (– 240).

Вариант 3

1) Найдите значение выражения: 2ctg 45 – 3cos 90. 2) Какое из чисел меньше нуля: sin 40, cos (– 10), tg 210, sin 140.

3) Углом какой четверти является угол α, если sin α > 0, cos α < 0.

Вариант 4

1) Найдите значение выражения: tg 60 – 6ctg 90. 2) Какое из чисел меньше нуля: sin(– 10), cos 140, tg 250, cos 250.

3) Углом какой четверти является угол α, если ctg α< 0, cos α> 0.

А0БSin50В1Г– 350Д– 1ЕCos(–140)
Ж3З310ИCos 140Л350М2
НCos 340О– 3ПCos 250РСSin 140Т– 310
У– 2Ф2ХTg 50ШTg 250ЮSin 340Я4

(слово – тригонометрия ключевое)

V. Сведения из истории тригонометрии

Учитель: Тригонометрия – это достаточно важный раздел математики для жизни человека.

Современный вид тригонометрии придал крупнейший математик 18 столетия Леонард Эйлер – швейцарец по происхождению долгие годы работавший в России и являвшийся членом Петербургской академии наук.

Он ввел известные определения тригонометрических функций сформулировал и доказал известные формулы, мы их учить будем позже. Жизнь Эйлера очень интересна и я советую познакомиться с ней по книге Яковлева «Леонард Эйлер».

(Сообщение ребят по данной теме)

VI. Подведение итогов урока

Игра «Крестики – нолики»

Участвуют двое учащихся самых активных. Их поддерживают группы. Решение заданий записывается в тетрадь.

Задания

1) Найти ошибку

а) sin 225 = – 1,1 в) sin 115 < О
б) cos 1000 = 2 г) cos (– 115) > 0

2) Выразите в градусах угол 3) Выразите в радианах угол 300 4) Какое наибольшее и наименьшее значение может иметь выражение: 1+ sin α; 5) Определите знак выражения: sin 260, cos 300. 6) В какой четверти числовой окружности расположена точка 7) Определите знаки выражения: cos 0,3π, sin 195, ctg 1, tg 390 8) Вычислите:

9) Сравнить: sin 2 и sin 350

VII. Рефлексия урока

Учитель: Где мы можем встретиться с тригонометрией?
На каких уроках в 9 классе, да и сейчас вы применяете понятия sin α, cos α; tg α; ctg α и с какой целью?

Позволяют установить ряд характерных результатов – свойств синуса, косинуса, тангенса и котангенса. В этой статье мы рассмотрим три основных свойства. Первое из них указывает знаки синуса, косинуса, тангенса и котангенса угла α в зависимости от того, углом какой координатной четверти является α.

Дальше мы рассмотрим свойство периодичности, устанавливающее неизменность значений синуса, косинуса, тангенса и котангенса угла α при изменении этого угла на целое число оборотов. Третье свойство выражает зависимость между значениями синуса, косинуса, тангенса и котангенса противоположных углов α и −α.

Если же Вас интересуют свойства функций синуса, косинуса, тангенса и котангенса, то их можно изучить в соответствующем разделе статьи .

Навигация по странице.

Знаки синуса, косинуса, тангенса и котангенса по четвертям

Ниже в этом пункте будет встречаться фраза «угол I, II, III и IV координатной четверти». Объясним, что же это за углы.

Возьмем единичную окружность , отметим на ней начальную точку А(1, 0), и повернем ее вокруг точки O на угол α, при этом будем считать, что мы попадем в точку A 1 (x, y).

Говорят, что угол α является углом I, II, III, IV координатной четверти, если точка А 1 лежит в I, II, III, IV четверти соответственно; если же угол α таков, что точка A 1 лежит на любой из координатных прямых Ox или Oy, то этот угол не принадлежит ни одной из четырех четвертей.

Для наглядности приведем графическую иллюстрацию. На чертежах ниже изображены углы поворота 30, −210, 585 и −45 градусов, которые являются углами I, II, III и IV координатных четвертей соответственно.

Углы 0, ±90, ±180, ±270, ±360, … градусов не принадлежат ни одной из координатных четвертей.

Теперь разберемся, какие знаки имеют значения синуса, косинуса, тангенса и котангенса угла поворота α в зависимости от того, углом какой четверти является α.

Для синуса и косинуса это сделать просто.

По определению синус угла α – это ордината точки А 1. Очевидно, что в I и II координатных четвертях она положительна, а в III и IV четвертях – отрицательна. Таким образом, синус угла α имеет знак плюс в I и II четвертях, а знак минус – в III и VI четвертях.

В свою очередь косинус угла α – это абсцисса точки A 1. В I и IV четвертях она положительна, а во II и III четвертях – отрицательна. Следовательно, значения косинуса угла α в I и IV четвертях положительны, а во II и III четвертях – отрицательны.

Чтобы определить знаки по четвертям тангенса и котангенса нужно вспомнить их определения: тангенс – это отношение ординаты точки A 1 к абсциссе, а котангенс – отношение абсциссы точки A 1 к ординате.

Тогда из правил деления чисел с одинаковыми и разными знаками следует, что тангенс и котангенс имеют знак плюс, когда знаки абсциссы и ординаты точки A 1 одинаковые, и имеют знак минус – когда знаки абсциссы и ординаты точки A 1 различны.

Следовательно, тангенс и котангенс угла имеют знак + в I и III координатных четвертях, и знак минус – во II и IV четвертях.

Действительно, например, в первой четверти и абсцисса x, и ордината y точки A 1 положительны, тогда и частное x/y, и частное y/x – положительно, следовательно, тангенс и котангенс имеют знаки +. А во второй четверти абсцисса x – отрицательна, а ордината y – положительна, поэтому и x/y, и y/x – отрицательны, откуда тангенс и котангенс имеют знак минус.

Переходим к следующему свойству синуса, косинуса, тангенса и котангенса.

Свойство периодичности

Сейчас мы разберем, пожалуй, самое очевидное свойство синуса, косинуса, тангенса и котангенса угла. Оно состоит в следующем: при изменении угла на целое число полных оборотов значения синуса, косинуса, тангенса и котангенса этого угла не изменяются.

Это и понятно: при изменении угла на целое число оборотов мы из начальной точки А всегда будем попадать в точку А 1 на единичной окружности, следовательно, значения синуса, косинуса, тангенса и котангенса остаются неизменными, так как неизменны координаты точки A 1.

С помощью формул рассматриваемое свойство синуса, косинуса, тангенса и котангенса можно записать так: sin(α+2·π·z)=sinα, cos(α+2·π·z)=cosα, tg(α+2·π·z)=tgα, ctg(α+2·π·z)=ctgα, где α – угол поворота в радианах, z – любое , абсолютная величина которого указывает количество полных оборотов, на которые изменяется угол α, а знак числа z указывает направление поворота.

Если же угол поворота α задан в градусах, то указанные формулы перепишутся в виде sin(α+360°·z)=sinα, cos(α+360°·z)=cosα, tg(α+360°·z)=tgα, ctg(α+360°·z)=ctgα.

Приведем примеры использования этого свойства. Например, , так как , а . Вот еще пример: или .

Это свойство вместе с формулами приведения очень часто используется при вычислении значений синуса, косинуса, тангенса и котангенса «больших» углов.

Рассмотренное свойство синуса, косинуса, тангенса и котангенса иногда называют свойством периодичности.

Свойства синусов, косинусов, тангенсов и котангенсов противоположных углов

Пусть А 1 – точка, полученная в результате поворота начальной точки А(1, 0) вокруг точки O на угол α, а точка А 2 – это результат поворота точки А на угол −α, противоположный углу α.

Свойство синусов, косинусов, тангенсов и котангенсов противоположных углов базируется на достаточно очевидном факте: упомянутые выше точки А 1 и А 2 либо совпадают (при ), либо располагаются симметрично относительно оси Ox.

То есть, если точка A 1 имеет координаты (x, y), то точка А 2 будет иметь координаты (x, −y). Отсюда по определениям синуса, косинуса, тангенса и котангенса записываем равенства и .

Сопоставляя их, приходим к соотношениям между синусами, косинусами, тангенсами и котангенсами противоположных углов α и −α вида .

Это и есть рассматриваемое свойство в виде формул.

Приведем примеры использования этого свойства. Например, справедливы равенства и .

Остается лишь заметить, что свойство синусов, косинусов, тангенсов и котангенсов противоположных углов, как и предыдущее свойство, часто используется при вычислении значений синуса, косинуса, тангенса и котангенса, и позволяет полностью уйти от отрицательных углов.

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Алгебра

Источник: https://www.fkrchr.ru/dresses/polozhitelnye-i-otricatelnye-ugly-v-trigonometrii-osnovnye/

Знаки тригонометрических функций по четвертям – примеры определения

Тангенс в 4 четверти имеет знак. Основные свойства тригонометрических функций: четность, нечетность, периодичность. Знаки значений тригонометрических функций по четвертям

Раздел математики, который занимается изучением тригонометрических функций, называется тригонометрией. К функциям относятся следующие: синус (sin), косинус (cos), тангенс (tg) и котангенс (ctg). Существуют также и обратные им функции: арксинус (arcsin), арккосинус (arccos), арктангенс (arctg) и арккотангенс (arcctg).

Для нахождения знаков тригонометрических функций по четвертям рекомендуется применять специальный «инструмент». Он называется окружностью синусов и косинусов. Однако по ней можно находить не только функции, которые соответствуют ее названию, но и другие. Делается это с помощью тригонометрических тождеств.

Специалисты рекомендуют для понимания материала получить базовые знания об углах и основных тригонометрических функциях. Следует применять принцип «от простого к сложному», поскольку нужно учитывать физиологические особенности головного мозга.

Виды углов

Важной «ступенью» в освоении тригонометрии является идентификация углов. Они делятся на 7 видов. Кроме того, существует еще два типа классификации по знаку: положительные и отрицательные.

Для составления критериев, по которым математики классифицируют углы, необходимо ввести некоторую переменную. Пусть существует некоторый угол a, градусная мера которого составляет x градусов. Необходимо рассмотреть 7 случаев, в которых он измеряется только в градусной размерности:

  1. При х < 90 угол считается острым.
  2. Если х = 90, то является прямым.
  3. В случае, когда выполняется неравенство, он считается тупым: 90 < x < 180.
  4. Развернутый: х = 180.
  5. Выпуклый: 180 < x < 360.
  6. Полный: х = 360.
  7. Свыше 360: x > 360.

Последний случай встречается очень часто в различных задачах, в которых следует вычислить определенное значение, упростить тригонометрическое выражение или использовать формулы приведения, а также найти разность между функциями.

Градус — это не единственная единица измерения размерности угла. Существует также и радиан, который пользуется большей популярностью, чем предыдущая единица.

Согласно статистике, которая составлена математиками, при решении задач с тригонометрическим уклоном многие используют радиан (около 95,88%).

Это объясняется удобством, поскольку в основном применяется тригонометрическая окружность для быстрого нахождения значений функций. Перевод одной единицы в другую осуществляется с помощью двух простых соотношений:

  1. В радианы: P = (a * ПИ) / 180.
  2. В градусы: а = (P * 180) / ПИ.

Существует 2 метода перевода: автоматизированный и ручной. В первом случае следует применять специальные радианные таблицы, программы и тригонометрическую окружность. Во втором — пользоваться формулами для преобразований.

Если очень часто приходится решать задачи подобного типа, то можно создать свой инструмент. Для этого потребуется табличный процессор EXCEL.

Необходимо вбить в ячейки две формулы, и тогда ручной метод «превратится» в автоматизированный.

Смысл функций

Тригонометрические функции используются не только в математике, но и в других дисциплинах (физике, электронике, микросхемотехнике, акустике и так далее). С их помощью можно описывать законы изменения различных периодических величин.

Для определения функции необходимо представить прямоугольный треугольник. Его стороны называются катетами и гипотенузой. Угол между двумя катетами является прямым, то есть он равен 90 градусам.

Синус угла — значение, которое вычисляется отношением линейного размера противолежащего катета к гипотенузе прямоугольного треугольника. Если выразить величину через отношение прилежащего катета к гипотенузе, то она называется косинусом угла.

Величина, полученная при отношении двух катетов — противолежащего к прилежащему, называется тангенсом. В случае с котангенсом, необходимо поменять числитель и знаменатель местами, то есть отношение прилежащего к противолежащему. Следует также напомнить, что все четыре функции обладают периодичностью.

Для sin и cos период соответствует 2 ПИ, а для tg и ctg — ПИ.

Обратными тригонометрическими функциями являются arcsin, arccos, arctg и arcctg. Их необходимо использовать в том случае, когда нужно найти угол по заданному значению. Для этих целей применяются таблицы Брадиса, тригонометрический калькулятор и программное обеспечение, а также круг синусов и косинусов.

Определение знака

Достоверность результата зависит от правильного решения. Неверный знак функции способен кардинально его изменить. Для безошибочного определения значений потребуются еще кое-какие знания. К ним относятся следующие: понятие о системе координат и теорема Пифагора, а также умение чертить окружность с определенным радиусом.

Системы координат, которые применяются при решении задач бывают полярными и декартовыми. Последние используются чаще, чем первые. Полярные применяются для решения задач из области высшей математики, а также в других сложных дисциплинах с физико-математическим уклоном.

Дополнительные сведения

Для определения знака применяется обыкновенная система координат с двумя осями. Одна из них (ОХ) является осью абсцисс, а другая (ОУ) — ординат. Ее центром, который совпадает с центром тригонометрической окружности, является точка «О».

Очень часто для работы необходимо знание теоремы Пифагора. Ее формулировка имеет следующий вид: в любом прямоугольном треугольнике выполняется равенство квадрата гипотенузы и суммы квадратов катетов.

Вторая формулировка записывается в виде формулы: с2 = a2 + b2 (c, a и b – гипотенуза и два катета соответственно).

Необходимо обратить внимание на следующий факт: сумма всех углов треугольника составляет 180 градусов, то есть является развернутым углом.

Математически утверждение можно записать следующим образом через углы а, b и c: а + b + c = 180.

Кроме того, существуют и другие соотношения между острыми углами прямоугольного треугольника: cos (a) = sin (b), cos (b) = sin (a), tg (a) = ctg (b), и tg (b) = ctg (a).

Чтобы найти знаки тангенса и котангенса по четвертям, используются такие соотношения: tg (a) = sin (a) / cos (a) и ctg (a) = cos (a) / sin (a).

Построение окружности

Сделать «инструмент», который значительно ускорит процесс решения задач довольно просто. Для этого нужно построить декартовую систему координат и единичную окружность с центром в точке О (точка пересечения осей абсцисс и ординат). Горизонтальная ось обозначается «х», а вертикальная — «у».

Рекомендуется чертить произвольную окружность. Чертеж должен быть простым и понятным. Это называется масштабирование, при котором изображение не соответствует действительному размеру объекта.

Его примером является обыкновенная географическая карта. Кроме того, при проектировании очень мелких деталей применяются чертежи, которые в несколько десятков или сотен раз превышают натуральные размеры.

Обозначение точки на плоскости выполняется следующим образом:

  1. Координаты заключаются в круглые скобки и разделяются «;».
  2. На первом месте стоит значение, соответствующее оси абсцисс, а на втором — ординат: (x;y).

Окружность пересекает оси в четырех точках: (1;0), (0;1), (-1;0) и (0;-1). Четвертями называются области, которые делят систему координат на четыре равные части. Отсчет выполняется от первой четверти (x>0 и y>0) против часовой стрелки:

  1. Значения по x и y больше 0 соответствуют первой четверти (I).
  2. II: x0.
  3. III: x

Источник: https://nauka.club/matematika/znaki-trigonometricheskikh-funktsiy.html

Основные свойства тригонометрических функций: четность, нечетность, периодичность. Знаки значений тригонометрических функций по четвертям

Тангенс в 4 четверти имеет знак. Основные свойства тригонометрических функций: четность, нечетность, периодичность. Знаки значений тригонометрических функций по четвертям

» Вопросы » Основные свойства тригонометрических функций: четность, нечетность, периодичность. Знаки значений тригонометрических функций по четвертям

Справочные данные по тангенсу (tg x) и котангенсу (ctg x). Геометрическое определение, свойства, графики, формулы. Таблица тангенсов и котангенсов, производные, интегралы, разложения в ряды. Выражения через комплексные переменные. Связь с гиперболическими функциями.

Геометрическое определение

|BD| – длина дуги окружности с центром в точке A.

α – угол, выраженный в радианах.

Тангенс (tg α) – это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине прилежащего катета |AB|.

Котангенс (ctg α) – это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине противолежащего катета |BC|.

Тангенс

Где n – целое.

В западной литературе тангенс обозначается так:.;;

.

Котангенс

Где n – целое.

В западной литературе котангенс обозначается так:. Также приняты следующие обозначения:;;

.

Периодичность

Функции y = tg x и y = ctg x периодичны с периодом π.

Четность

Функции тангенс и котангенс – нечетные.

Области определения и значений, возрастание, убывание

Функции тангенс и котангенс непрерывны на своей области определения (см. доказательство непрерывности). Основные свойства тангенса и котангенса представлены в таблице (n – целое).

y = tg xy = ctg x
Область определения и непрерывность
Область значений -∞ < y < +∞ -∞ < y < +∞
Возрастание
Убывание
Экстремумы
Нули, y = 0
Точки пересечения с осью ординат, x = 0y = 0

Формулы тангенса и котангенс от суммы и разности

Остальные формулы легко получить, например

Формула суммы и разности тангенсов

В данной таблице представлены значения тангенсов и котангенсов при некоторых значениях аргумента.

Производные

; .

. Производная n-го порядка по переменной x от функции :.

Вывод формул для тангенса > > > ; для котангенса > > >

Разложения в ряды

Чтобы получить разложение тангенса по степеням x, нужно взять несколько членов разложения в степенной ряд для функций sin x и cos x и разделить эти многочлены друг на друга , . При этом получаются следующие формулы.

При . при .

где B n – числа Бернулли. Они определяются либо из рекуррентного соотношения:

; ; где . Либо по формуле Лапласа:

Обратные функции

Обратными функциями к тангенсу и котангенсу являются арктангенс и арккотангенс , соответственно.

Арккотангенс, arcctg

, где n – целое.

Использованная литература: И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Г. Корн, Справочник по математике для научных работников и инженеров, 2012.

Позволяют установить ряд характерных результатов – свойств синуса, косинуса, тангенса и котангенса. В этой статье мы рассмотрим три основных свойства. Первое из них указывает знаки синуса, косинуса, тангенса и котангенса угла α в зависимости от того, углом какой координатной четверти является α.

Дальше мы рассмотрим свойство периодичности, устанавливающее неизменность значений синуса, косинуса, тангенса и котангенса угла α при изменении этого угла на целое число оборотов. Третье свойство выражает зависимость между значениями синуса, косинуса, тангенса и котангенса противоположных углов α и −α.

Если же Вас интересуют свойства функций синуса, косинуса, тангенса и котангенса, то их можно изучить в соответствующем разделе статьи .

Навигация по странице.

Положительные и отрицательные четверти косинус синус. Основные свойства тригонометрических функций: четность, нечетность, периодичность. Знаки значений тригонометрических функций по четвертям

Тангенс в 4 четверти имеет знак. Основные свойства тригонометрических функций: четность, нечетность, периодичность. Знаки значений тригонометрических функций по четвертям

Знак тригонометрической функции зависит исключительно от координатной четверти, в которой располагается числовой аргумент. В прошлый раз мы учились переводить аргументы из радианной меры в градусную (см. урок «Радианная и градусная мера угла »), а затем определять эту самую координатную четверть. Теперь займемся, собственно, определением знака синуса, косинуса и тангенса.

Синус угла α — это ордината (координатаy) точки на тригонометрической окружности, которая возникает при повороте радиуса на угол α.

Косинус угла α — это абсцисса (координатаx) точки на тригонометрической окружности, которая возникает при повороте радиуса на угол α.

Тангенс угла α — это отношение синуса к косинусу. Или, что то же самое, отношение координатыy к координатеx .

Обозначение: sin α =y ; cos α =x ; tg α =y 😡 .

Все эти определения знакомы вам из курса алгебры старших классов. Однако нас интересуют не сами определения, а следствия, которые возникают на тригонометрической окружности. Взгляните:

Синим цветом обозначено положительное направление осиOY (ось ординат), красным — положительное направление осиOX (ось абсцисс). На этом «радаре» знаки тригонометрических функций становятся очевидными. В частности:

  1. sin α > 0, если угол α лежит вI илиII координатной четверти. Это происходит из-за того, что по определению синус — это ордината (координатаy). А координатаy будет положительной именно вI иII координатных четвертях;
  2. cos α > 0, если угол α лежит вI илиIV координатной четверти. Потому что только там координатаx (она же — абсцисса) будет больше нуля;
  3. tg α > 0, если угол α лежит вI илиIII координатной четверти. Это следует из определения: ведь tg α =y 😡 , поэтому он положителен лишь там, где знакиx иy совпадают. Это происходит вI координатной четверти (здесьx > 0,y > 0) иIII координатной четверти (x < 0,y < 0).

Для наглядности отметим знаки каждой тригонометрической функции — синуса, косинуса и тангенса — на отдельных «радарах». Получим следующую картинку:

Заметьте: в своих рассуждениях я ни разу не говорил о четвертой тригонометрической функции — котангенсе. Дело в том, что знаки котангенса совпадают со знаками тангенса — никаких специальных правил там нет.

Теперь предлагаю рассмотреть примеры, похожие на задачи B11 из пробного ЕГЭ по математике, который проходил 27 сентября 2011. Ведь лучший способ понять теорию — это практика. Желательно — много практики. Разумеется, условия задач были немного изменены.

Задача. Определите знаки тригонометрических функций и выражений (значения самих функций считать не надо):
  1. sin (3π/4);
  2. cos (7π/6);
  3. tg (5π/3);
  4. sin (3π/4) · cos (5π/6);
  5. cos (2π/3) · tg (π/4);
  6. sin (5π/6) · cos (7π/4);
  7. tg (3π/4) · cos (5π/3);
  8. ctg (4π/3) · tg (π/6).

План действий такой: сначала переводим все углы из радианной меры в градусную (π → 180°), а затем смотрим в какой координатной четверти лежит полученное число. Зная четверти, мы легко найдем знаки — по только что описанным правилам. Имеем:

  1. sin (3π/4) = sin (3 · 180°/4) = sin 135°. Поскольку 135° ∈ , это угол изII координатной четверти. Но синус воII четверти положителен, поэтому sin (3π/4) > 0;
  2. cos (7π/6) = cos (7 · 180°/6) = cos 210°. Т.к. 210° ∈ , это угол изIII координатной четверти, в которой все косинусы отрицательны. Следовательно, cos (7π/6) < 0;
  3. tg (5π/3) = tg (5 · 180°/3) = tg 300°. Поскольку 300° ∈ , мы находимся вIV четверти, где тангенс принимает отрицательные значения. Поэтому tg (5π/3) < 0;
  4. sin (3π/4) · cos (5π/6) = sin (3 · 180°/4) · cos (5 · 180°/6) = sin 135° · cos 150°. Разберемся с синусом: т.к. 135° ∈ , этоII четверть, в которой синусы положительны, т.е. sin (3π/4) > 0. Теперь работаем с косинусом: 150° ∈ — сноваII четверть, косинусы там отрицательны. Поэтому cos (5π/6) < 0. Наконец, следуя правилу «плюс на минус дает знак минус», получаем: sin (3π/4) · cos (5π/6) < 0;
  5. cos (2π/3) · tg (π/4) = cos (2 · 180°/3) · tg (180°/4) = cos 120° · tg 45°. Смотрим на косинус: 120° ∈ — этоII координатная четверть, поэтому cos (2π/3) < 0. Смотрим на тангенс: 45° ∈ — этоI четверть (самый обычный угол в тригонометрии). Тангенс там положителен, поэтому tg (π/4) > 0. Опять получили произведение, в котором множители разных знаков. Поскольку «минус на плюс дает минус», имеем: cos (2π/3) · tg (π/4) < 0;
  6. sin (5π/6) · cos (7π/4) = sin (5 · 180°/6) · cos (7 · 180°/4) = sin 150° · cos 315°. Работаем с синусом: поскольку 150° ∈ , речь идет оII координатной четверти, где синусы положительны. Следовательно, sin (5π/6) > 0. Аналогично, 315° ∈ — этоIV координатная четверть, косинусы там положительны. Поэтому cos (7π/4) > 0. Получили произведение двух положительных чисел — такое выражение всегда положительно. Заключаем: sin (5π/6) · cos (7π/4) > 0;
  7. tg (3π/4) · cos (5π/3) = tg (3 · 180°/4) · cos (5 · 180°/3) = tg 135° · cos 300°. Но угол 135° ∈ — этоII четверть, т.е. tg (3π/4) < 0. Аналогично, угол 300° ∈ — этоIV четверть, т.е. cos (5π/3) > 0. Поскольку «минус на плюс дает знак минус», имеем: tg (3π/4) · cos (5π/3) < 0;
  8. ctg (4π/3) · tg (π/6) = ctg (4 · 180°/3) · tg (180°/6) = ctg 240° · tg 30°. Смотрим на аргумент котангенса: 240° ∈ — этоIII координатная четверть, поэтому ctg (4π/3) > 0. Аналогично, для тангенса имеем: 30° ∈ — этоI координатная четверть, т.е. самый простой угол. Поэтому tg (π/6) > 0. Снова получили два положительных выражения — их произведение тоже будет положительным. Поэтому ctg (4π/3) · tg (π/6) > 0.

В заключение рассмотрим несколько более сложных задач. Помимо выяснения знака тригонометрической функции, здесь придется немного посчитать — именно так, как это делается в настоящих задачах B11. В принципе, это почти настоящие задачи, которые действительно встречается в ЕГЭ по математике.

Задача. Найдите sin α, если sin 2 α = 0,64 и α ∈ [π/2; π].

Поскольку sin 2 α = 0,64, имеем: sin α = ±0,8. Осталось решить: плюс или минус? По условию, угол α ∈ [π/2; π] — этоII координатная четверть, где все синусы положительны. Следовательно, sin α = 0,8 — неопределенность со знаками устранена.

Задача. Найдите cos α, если cos 2 α = 0,04 и α ∈ [π; 3π/2].

Действуем аналогично, т.е. извлекаем квадратный корень: cos 2 α = 0,04 ⇒ cos α = ±0,2. По условию, угол α ∈ [π; 3π/2], т.е. речь идет оIII координатной четверти. Там все косинусы отрицательны, поэтому cos α = −0,2.

Задача. Найдите sin α, если sin 2 α = 0,25 и α ∈ .

Имеем: sin 2 α = 0,25 ⇒ sin α = ±0,5. Снова смотрим на угол: α ∈ — этоIV координатная четверть, в которой, как известно, синус будет отрицательным. Таким образом, заключаем: sin α = −0,5.

Задача. Найдите tg α, если tg 2 α = 9 и α ∈ .

Все то же самое, только для тангенса. Извлекаем квадратный корень: tg 2 α = 9 ⇒ tg α = ±3. Но по условию угол α ∈ — этоI координатная четверть. Все тригонометрические функции, в т.ч. тангенс, там положительны, поэтому tg α = 3. Все!

Отсчёт углов на тригонометрическом круге

Внимание! К этой теме имеются дополнительные материалы в Особом разделе 555. Для тех, кто сильно “не очень…”

И для тех, кто “очень даже…”)

Он почти такой, как в предыдущем уроке. Есть оси, окружность, угол, всё чин-чинарём. Добавлены номера четвертей (в уголках большого квадрата) – от первой, до четвёртой. А то вдруг кто не знает? Как видите, четверти (их ещё называют красивым словом “квадранты”) нумеруются против хода часовой стрелки. Добавлены значения угла на осях. Всё понятно, никаких заморочек.

И добавлена зелёная стрелка. С плюсом. Что она означает? Напомню, что неподвижная сторона угла всегда прибита к положительной полуоси ОХ. Так вот, если подвижную сторону угла мы будем крутить по стрелке с плюсом, т.е. по возрастанию номеров четвертей, угол будет считаться положительным. Для примера на картинке показан положительный угол +60°.

Если будем откладывать углы в обратную сторону, по ходу часовой стрелки,угол будет считаться отрицательным. Наведите курсор на картинку (или коснитесь картинки на планшете), увидите синюю стрелку с минусом.

Это – направление отрицательного отсчёта углов. Для примера показан отрицательный угол (- 60°). А ещё вы увидите, как поменялись циферки на осях… Я их тоже перевёл в отрицательные углы. Нумерация квадрантов не меняется.

Вот тут, обычно, начинаются первые непонятки. Как так!? А если отрицательный угол на круге совпадёт с положительным!? Да и вообще, получается что, одно и то же положение подвижной стороны (или точки на числовой окружности) можно обозвать как отрицательным углом, так и положительным!?

Да. Именно так. Скажем, положительный угол 90 градусов занимает на круге точно такое же положение, что и отрицательный угол в минус 270 градусов. Положительный угол, к примеру, +110° градусов занимает точно такое же положение, что и отрицательный угол -250°.

Не вопрос. Всяко правильно.) Выбор положительного или отрицательного исчисления угла зависит от условия задания. Если в условии ничего не сказано открытым текстом про знак угла, (типа “определить наименьший положительный угол” и т.д.), то работаем с удобными нам величинами.

Исключением (а как без них?!) являются тригонометрические неравенства, но там мы эту фишку освоим.

А теперь вопрос вам. Как я узнал, что положение угла 110° совпадает с положением угла -250°?
Намекну, что это связано с полным оборотом. В 360°… Непонятно? Тогда рисуем круг. Сами рисуем, на бумаге. Отмечаем угол примерно 110°. И считаем, сколько остается до полного оборота. Останется как раз 250°…

Уловили? А теперь – внимание! Если углы 110° и -250° занимают на круге одно и то же положение, то что? Да то, что у углов 110° и -250° совершенно одинаковые синус, косинус, тангенс и котангенс!
Т.е.

sin110° = sin(-250°), ctg110° = ctg(-250°) и так далее.

Вот это уже действительно важно! И само по себе – есть масса заданий, где надо упростить выражения, и как база для последующего освоения формул приведения и прочих премудростей тригонометрии.

Понятное дело, 110° и -250° я взял наобум, чисто для примера. Всё эти равенства работают для любых углов, занимающих одно положение на круге. 60° и -300°, -75° и 285°, ну и так далее. Отмечу сразу, что углы в этих парочках – разные. А вот тригонометрические функции у них – одинаковые.

Думаю, что такое отрицательные углы вы поняли. Это совсем просто. Против хода часовой стрелки – положительный отсчёт. По ходу – отрицательный. Считать угол положительным, или отрицательным зависит от нас. От нашего желания.

Ну, и ещё от задания, конечно… Надеюсь, вы поняли и как переходить в тригонометрических функциях от отрицательных углов к положительным и обратно. Нарисовать круг, примерный угол, да посмотреть, сколько недостаёт до полного оборота, т.е.

до 360°.

Углы больше 360°

Займемся углами которые больше 360°. А такие бывают? Бывают, конечно.

Как их нарисовать на круге? Да не проблема! Допустим, нам надо понять, в какую четверть попадёт угол в 1000°? Легко! Делаем один полный оборот против хода часовой стрелки (угол-то нам дали положительный!). Отмотали 360°.

Ну и мотаем дальше! Ещё оборот – уже получилось 720°. Сколько осталось? 280°. На полный оборот не хватает… Но угол больше 270° – а это граница между третьей и четвёртой четвертью. Стало быть наш угол в 1000° попадает в четвёртую четверть. Всё.

Как видите, это совсем просто. Ещё раз напомню, что угол 1000° и угол 280°, который мы получили путём отбрасывания “лишних” полных оборотов – это, строго говоря, разные углы. Но тригонометрические функции у этих углов совершенно одинаковые! Т.е. sin1000° = sin280°, cos1000° = cos280° и т.д. Если бы я был синусом, я бы не заметил разницы между этими двумя углами…

Зачем всё это нужно? Зачем нам переводить углы из одного в другой? Да всё за тем же.) С целью упрощения выражений. Упрощение выражений, собственно, главная задача школьной математики. Ну и, попутно, голова тренируется.)

Ну что, потренируемся?)

Отвечаем на вопросы. Сначала простые.

1. В какую четверть попадает угол -325° ?

2. В какую четверть попадает угол 3000° ?

3. В какую четверть попадает угол -3000° ?

Есть проблемы? Или неуверенность? Идём в Раздел 555, Практическая работа с тригонометрическим кругом. Там, в первом уроке этой самой “Практической работы…” всё подробненько… В таких вопросах неуверенности быть не должно!

4. Какой знак имеет sin555° ?

5. Какой знак имеет tg555° ?

Определили? Отлично! Сомневаетесь? Надо в Раздел 555… Кстати, там научитесь рисовать тангенс и котангенс на тригонометрическом круге. Очень полезная штучка.

А теперь вопросы помудрёнее.

6. Привести выражение sin777° к синусу наименьшего положительного угла.

7. Привести выражение cos777° к косинусу наибольшего отрицательного угла.

8. Привести выражение cos(-777°) к косинусу наименьшего положительного угла.

9. Привести выражение sin777° к синусу наибольшего отрицательного угла.

Что, вопросы 6-9 озадачили? Привыкайте, на ЕГЭ и не такие формулировочки встречаются… Так и быть, переведу. Только для вас!

Слова “привести выражение к…” означают преобразовать выражение так, чтобы его значение не изменилось, а внешний вид поменялся в соответствии с заданием. Так, в задании 6 и 9 мы должны получить синус, внутри которого стоит наменьший положительный угол. Всё остальное – не имеет значения.

Ответы выдам по порядку (в нарушение наших правил). А что делать, знака всего два, а четверти всего четыре… Не разбежишься в вариантах.

6. sin57°.

7. cos(-57°).

8. cos57°.

Источник: https://www.womanizers.ru/polozhitelnye-i-otricatelnye-chetverti-kosinus-sinus-osnovnye/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.